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Abstract

The universal scaling function of the square lattice Ising model in a magnetic
field is obtained numerically via Baxter’s variational corner transfer matrix
approach. The high precision numerical data are in perfect agreement with
the remarkable field theory results obtained by Fonseca and Zamolodchikov,
as well as with many previously known exact and numerical results for the 2D
Ising model. This includes excellent agreement with analytic results for the
magnetic susceptibility obtained by Orrick, Nickel, Guttmann and Perk. In
general, the high precision of the numerical results underlines the potential and
full power of the variational corner transfer matrix approach.

PACS numbers: 05.10.−a, 05.50.+q, 64.60.De
Mathematics Subject Classification: 82B20, 82B23, 81V70

(Some figures in this article are in colour only in the electronic version)

The Ising model has played a prominent role in the development of the theory of phase
transition and critical phenomena [1–8]. The partition function of the nearest neighbour Ising
model on the square lattice reads

Z =
∑

σ

exp

⎧⎨
⎩β

∑
〈ij〉

σiσj + H
∑

i

σi

⎫⎬
⎭ , σi = ±1, (1)

where the first sum in the exponent is taken over all edges, the second over all sites and
the outer sum over all spin configurations {σ } of the lattice. The constants H and β denote
the (suitably normalized) magnetic field and inverse temperature. The specific free energy,
magnetization and magnetic susceptibility are defined as

F = − lim
N→∞

1

N
log Z, M = − ∂F

∂H
, χ = − ∂2F

∂H 2
, (2)

1751-8113/09/042005+10$30.00 © 2009 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/1751-8113/42/4/042005
mailto:vladimir@maths.anu.edu.au
http://stacks.iop.org/JPhysA/42/042005


J. Phys. A: Math. Theor. 42 (2009) 042005 Fast Track Communication

where N is the number of lattice sites. The model exhibits a second-order phase transition at
β = βc,H = 0, where [1]

βc = 1
2 log(1 +

√
2) = 0.440 686 79 . . . . (3)

In what follows, we will exclude the temperature variable β in favour of a new variable

2τ = cosech(2β) − sinh(2β), τc = 0, (4)

which is vanishing for β = βc and positive for β < βc (above the critical temperature). Note
also that this variable changes the sign under the Kramers–Wannier duality transformation for
H = 0. Another useful related variable is

k = k(τ ) = (
√

1 + τ 2 + τ)2. (5)

According to the scaling theory [6, 9, 10], the leading singular part, Fsing(τ,H), of the
free energy (2) in the vicinity of the critical point can be expressed through a universal function
F(m, h),

Fsing(τ,H) = F(m(τ,H), h(τ,H)), τ → 0, H → 0, (6)

where τ and H enter the rhs only through nonlinear scaling variables [11],

m = m(τ,H) = −
√

2τ + O(τ 3) + O(H 2) + · · · ,
h = h(τ,H) = ChH + HO(τ) + O(H 3) . . . , (7)

which are analytic functions of τ and H. The coefficients in these expansions (for instance,
the leading coefficients −√

2 and Ch) are specific to the square lattice Ising model; however,
the function F(m, h) is the same for all models in the 2D Ising model universality class. It
can be written as

F(m, h) = m2

8π
log m2 + h16/15�(η), η = m

h8/15
, (8)

where �(η) is a universal scaling function of a single variable η (the scaling parameter).
The function F(m, h) has a concise interpretation in terms of 2D Euclidean quantum field

theory. Namely, it coincides with the vacuum energy density of the ‘Ising field theory’ (IFT)
[12]. The latter is defined as a model of perturbed conformal field theory with the action

AIFT = A(c=1/2) +
m

2π

∫
ε(x) d2x + h

∫
σ(x) d2x, (9)

where A(c=1/2) stands for the action of the c = 1/2 CFT of free massless Majorana fermions,
σ(x) and ε(x) are primary fields of conformal dimensions 1/16 and 1/2. Their normalization
is fixed by the usual CFT convention

|x|2〈ε(x)ε(0)〉 → 1; |x|1/4〈σ(x)σ (0)〉 → 1 as |x| → 0. (10)

With this normalization, the parameters m and h have the mass dimensions 1 and 15/8,
respectively, and the scaling parameter η in (8) is dimensionless.

The scaling function (8) is of much interest as it controls all thermodynamic properties of
the Ising model in the critical domain. Although there are many exact results (obtained through
exact solutions of (9) at h = 0 and all τ [1–3, 13–16], and at τ = 0 and all h [8, 17–22];
these data are collected in [23]) as well as much numerical data [24–28] about this function,
its complete analytic characterization is still lacking.

Recently [12] the function (8) particularly its analytic properties have been thoroughly
studied in the framework of the IFT (9) The authors of [12] made extensive numerical
calculations of the scaling function �(η) using the ‘truncated free-fermion space approach’
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Figure 1. Scaling function of the two-dimensional Ising model in a magnetic field. The figure
shows about 10 000 data points for the scaling function �(η). As expected, the points collapse
on a smooth curve (their spread is much smaller than the resolution of the picture). The figure
also shows plots of the asymptotic expansions (15), (16) and (17) with the coefficients given in
tables 1–3.

(TFFSA), which is a modification of the well-known ‘truncated conformal space approach’
(TCSA) [29, 30].

The primary motivation for our work was to confirm and extend the field theory results
of [12] through ab initio calculations, directly from the original lattice formulation (1) of
the Ising model. We used Baxter’s variational approach based on the corner transfer matrix
method [31–33]. The main advantage of this approach over other numerical schemes (e.g.,
the row-to-row transfer matrix method) is that it is formulated directly in the limit of an
infinite lattice. Its accuracy depends on the magnitude of truncated eigenvalues of the corner
transfer matrix (which is at our control), rather than the size of the lattice. The details of our
calculations along with numerical data for the free energy, magnetization and internal energy
of the Ising model will be presented elsewhere [34]. We used several important enhancements
of the original Baxter approach [32], in particular an improved iteration scheme [35], known as
the corner transfer matrix renormalization group (CTMRG). The calculations were performed
for a grid of values of the magnetic field and temperature in the range 10−7 < H < 10−2

and 0.9βc < β < 1.1βc, containing about 10 000 distinct point (excluding a small region
around the critical point). The results for the scaling function �(η) are shown in figure 1. All
calculated data points collapse on a smooth curve, shown by the solid line (additional details
presented on the picture are explained below). Our numerical results for �(η) remarkably
confirm the field theory calculations of [12] to within all six significant digits presented
therein3.

3 We thank Alexander Zamolodchikov for providing us with additional unpublished numerical data for �(η), which
are again in perfect agreement with our results.
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The precision of our numerical calculations was tested against all available exact results
for the Ising model. In particular, the agreement between calculated and exact values for the
zero-field free energy [1], magnetization [2] and magnetic susceptibility [36] in our working
range of temperatures varied between 14 and 28 decimal places (depending on the distance
to the critical point). In addition to these checks, we also confirmed and extended many
previously existing numerical results for the Ising model. Some details of our results are
described below.

For the following discussion, it is convenient to rewrite (8) in an alternative form,
introducing two more scaling functions

F(m, h) = m2

8π
log m2 +

{
m2Ghigh(ξ), m < 0
m2Glow(ξ), m > 0,

ξ = h/|m|15/8, (11)

where Ghigh(0) = Glow(0) = 0 corresponding to

F(m, 0) = m2

8π
log m2. (12)

These scaling functions are thoroughly discussed in [12]. The function Ghigh(ξ) can be
expanded in a series in even powers of ξ :

Ghigh(ξ) = G2ξ
2 + G4ξ

4 + G6ξ
6 + · · · (13)

convergent in some domain around the origin of the ξ plane. The function Glow(ξ) admits an
asymptotic expansion

Glow(ξ) = G̃1ξ + G̃2ξ
2 + G̃3ξ

3 + · · · (14)

for small positive ξ . These new functions are simply related to �(η). Note, in particular, that
the coefficients Gn and G̃n control the behaviour of the function �(η) for large values of η on
the real line

�low(η) = G̃1η
1
8 + G̃2η

− 7
4 + G̃3η

− 29
8 + · · · for real η → +∞, (15)

�high(η) = G2(−η)−
7
4 + G4(−η)−

22
4 + G6(−η)−

37
4 + · · · for real η → −∞. (16)

Finally, for small values of η,

�(η) = − η2

8π
log η2 +

∞∑
k=0

�kη
k, (17)

where the series converges in a finite domain around the origin of the complex η plane.
Some of the above expansion coefficients are known exactly. The coefficient G̃1 is known

explicitly [4]

G̃1 = −21/12 e−1/8A3/2 = −1.357 838 341 706 595 . . . , (18)

where A = 1.282 427 . . . is the Glaisher constant. The coefficients G2 and G̃2 have integral
expressions [14, 15] involving solutions of the Painlevé III equation. They were numerically
evaluated to very high precision (50 digits) in [36]

G2 = −1.845 228 078 232 838 . . . , G̃2 = −0.048 953 289 7203 . . . . (19)

The coefficient �0 was calculated in [17],

�0 = − (2π)
1
15 γ

(
1
3

)
γ
(

1
5

)
γ
(

7
15

)
[
γ
(

1
4

)
γ 2

(
3

16

)] 8
15

= −1.197 733 383 797 99 . . . , γ (x) = 
(x)


(1 − x)
, (20)
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where 
(x) is the standard 
 function. The coefficient �1 has an explicit integral
representation, obtained in [37]. We have evaluated the required integral explicitly:

�1 = − 32 · 2
3
4

225(2π)
7

15

γ
(

1
3

)
γ
(

1
8

)
[
γ
(

1
4

)
γ 2

(
3

16

)] 19
15

7∏
k=3

γ

(
k

15

)
= −0.318 810 124 8906 . . . . (21)

In contrast to the field theory case, the lattice free energy,

F(τ,H) = Fsing(τ,H) + Freg(τ,H) + Fsub(τ,H), τ,H → 0, (22)

never coincides with its leading universal part (6). It also contains regular terms Freg(τ,H),
analytic in τ and H, as well as sub-leading singular terms Fsub(τ,H), which are non-analytic,
but less singular than the first term in (22). Therefore, to extract the universal scaling
function from the lattice calculations, one should be able to isolate and subtract these extra
terms. Moreover, one needs to know the explicit form of the nonlinear scaling variables (7). In
principle, all this information can be determined entirely from numerical calculations (provided
one assumes the values of exponents of the sub-leading terms, predicted by the analysis
[36, 38] of the CFT irrelevant operators, contributing to the free energy (22)). The accuracy
of this ‘fully numerical’ approach, however, deteriorates rapidly for the higher order terms.
Much more accurate results can be obtained if the numerical work is combined with known
exact results.

Write the nonlinear variables (7) in the form

m(τ,H) = −
√

2τ a(τ) + H 2b(τ) + O(H 4),

h(τ,H) = ChH
[
c(τ ) + H 2d(τ) + O(H 4)

]
, (23)

where a(0) = c(0) = 1, h(τ,H) = −h(τ,−H). Similarly, write the regular part as

Freg(τ,H) = A(τ) + H 2B(τ) + O(H 4). (24)

As shown in [36], the most singular sub-leading term, contributing to (22), is of the order of
O(τ 9/4H 2) (see equation (36) below). The fact that sub-leading terms arise only in such a
high order (∼m6) is a remarkable property of the square lattice nearest neighbour Ising model,
which greatly simplifies the calculation of the universal scaling function from the numerical
data.

For H = 0, expression (22) should reduce to Onsager’s exact result [1]

F(τ, 0) = log
√

2 cosh(2β) +
∫ π

0

dθ

2π
log

[
1 +

(
1 − cos2 θ

1 + τ 2

)1/2]
. (25)

Therefore, one should be able to rewrite the last formula in the form (12) plus regular terms.
This is achieved by choosing [39]

a(τ) =
[∫ 1

0
dx F

(
1
2 , 1

2 , 1;−xτ 2)/(1 + xτ 2)1/2

]1/2

= 1 − 3τ 2

16
+

137τ 4

1536
+ O(τ 6), (26)

where F(a, b, c, z) denotes the Gauss hypergeometric function. The corresponding
contribution to (24) then reads

A(τ) = −2G
π

− log 2

2
+

τ

2
− τ 2(1 + 5 log 2)

4π
− τ 3

12
+

5τ 4(1 + 6 log 2)

64π
+ O(τ 5), (27)

where G = 0.915 965 594 . . . is the Catalan constant.
Next, using the exact expression for the zero-field magnetization [2, 3]

M(τ, 0) = (1 − k(τ )2)1/8, τ < 0, (28)
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with k(τ ) defined in (5), one finds from (1), (11), (14) and (22)

c(τ ) = M(τ)

(−4τa(τ))1/8
= 1 +

τ

4
+

15τ 2

128
− 9τ 3

512
− 4333τ 4

98 304
+ O(τ 5), (29)

and also

Ch = −23/16/G̃1 = 0.838 677 624 411 . . . . (30)

Finally, consider the zero-field susceptibility. No simple closed form expression for the
zero-field susceptibility χ(τ) is known. However, the authors of [36] obtained remarkable
asymptotic expansions of χ(τ) for small τ to within O(τ 14) terms with high-precision
numerical coefficients. We have compared their series with our numerical results for the
susceptibility in the range of temperatures |τ | = 0.05–0.14 and found that they agree to each
other in 14–18 significant digits (depending on the value of τ ). Their result can be written as
(retaining the terms up to O(|τ |9/4), inclusive)

χ(τ)ONGP = −2− 7
8 C2

hG
′′(0)|τ |− 7

4

(
1 +

τ

2
+

5τ 2

8
+

3τ 3

16
− 23τ 4

384
+ O(τ 5)

)

+ e(τ ) + f (τ) log|τ | + O(τ 3 log|τ |), (31)

where e(τ ) and f (τ) are explicitly known second-order polynomials in τ . The coefficient
in front of the first term is written in our notations4. The symbol G′′(0) there stands for
the second derivative of the scaling function G(ξ) with respect to its argument. Namely
G′′(0) = G′′

high(0) = 2G2 for τ > 0 and G′′(0) = G′′
low(0) = 2G̃2 for τ < 0. The

corresponding values are given in (19) above. Next, calculating the second field derivative of
(22) at H = 0, one obtains

χ(τ) = −2− 7
8 C2

hG
′′(0)|τ |− 7

4 a(τ)−
7
4 c(τ )2 − ∂2Fsub(τ,H)

∂H 2

∣∣∣∣
H=0

− 2B(τ) +
τa(τ)b(τ )√

2π
(1 + log(2τ 2a(τ))). (32)

Equating this expression to (31) and using (26), (29) and explicit forms of the polynomials
e(τ ) and f (τ) from [36], one obtains

B(τ) = 0.052 066 622 5469 + 0.076 912 034 1893τ + 0.036 020 046 2309τ 2 + O(τ 3), (33)

and

b(τ) = μh

(
1 +

τ

2
+ O(τ 2)

)
, μh = 0.071 868 670 814. (34)

Noting that

a(τ)−
7
4 c(τ )2 = 1 +

τ

2
+

5τ 2

8
+

3τ 3

16
− 11τ 4

192
+ O(τ 5), (35)

one immediately obtains the main contribution to the sub-leading term

(
2− 7

8 C2
hG

′′(0)
)−1 ∂2Fsub(τ,H)

∂H 2

∣∣∣
H=0

= − 1

384
|τ | 9

4 + · · · . (36)

4 The correspondence with the notations of [36] is as follows. Their βχ(τ) is denoted here as χ(τ)ONGP. Their
coefficients C± are connected to our constants by

C+ = −2
1
8 (2βc

√
2)−

7
4 C2

hG2, C− = −2
1
8 (2βc

√
2)−

7
4 C2

hG̃2,

where βc is given in (3).
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Table 1. Numerical values of the coefficients G2n in (13). The second column contains the
high-temperature dispersion relation (DR) results from [12]. The coefficient G2 is known exactly
[14, 15, 36].

CTM (this work) High-T DR [12] From references

G2 −1.845 228 078 2328(2) −1.845 2283 −1.845 228 078 232 838 . . . [14, 15, 36]
G4 8.333 711 750(5) 8.334 10 8.333 70(1) [26]
G6 −95.168 96(1) −95.1884 −95.1689(4) [26]
G8 1457.62(3) 1458.21 1457.55(11) [26]
G10 −25 891(2) −25 889 −25 884(13) [26]

Table 2. Numerical values of the coefficients G̃n in (14). The second column contains the low-
temperature dispersion relation results from [12]. The right column refers to exact values of G̃1
[4] and G̃2 [14, 15, 36] and other numerical results.

CTM (this work) Low-T DR [12] From references

G̃1 −1.357 838 341 7066(1) −1.357 838 35 −1.357 838 341 706 595 . . . [4]
G̃2 −0.048 953 289 720(1) −0.048 9589 −0.048 953 289 720 3 . . . [14, 15, 36]
G̃3 0.038 863 932(3) 0.038 8954 0.038 7529 [40]; 0.039(1) [25]
G̃4 −0.068 362 119(2) −0.068 5060 −0.068 5535 [40]; −0.0685(2) [25]
G̃5 0.183 883 70(1) 0.184 53 –
G̃6 −0.659 1714(1) −0.662 15 –
G̃7 2.937 665(3) 2.952 –
G̃8 −15.61(1) −15.69 –

The results of [36] provided the first convincing demonstration of the violation to simple
1-parametric scaling in the square-lattice Ising model. Note that despite the O(|τ |9/4) term
gives a very small contribution to the susceptibility, we were able to confidently quantify it
from our numerical results. Namely, we estimated the coefficient of the τ 4 term in the series
shown in the parenthesis in the first line of (31). Our estimate is 23.004/384 which is within
0.02% of its exact value 23/384.

The coefficient d(τ) in (23) was estimated from our numerical data for the internal energy,

d(τ) = eh + O(τ), eh = −0.007(1), (37)

which is in agreement with the result eh = −0.007 27(15) from [26].
The above expressions were used to analyse our extensive numerical data and extract the

necessary information to obtain the universal scaling function. The results are summarized
in four tables. For convenience of comparison, we quoted the corresponding results from
[12], including those obtained through the TFFSA, the high/low temperature and extended
dispersion relations (DR). Earlier exact and numerical results for the same quantities are also
quoted (whenever available). Figure 1 shows about 10 000 data points for the scaling function
�(η). As expected, the points collapse on a smooth curve (their spread is much smaller than
the resolution of the picture). Figure 1 also shows plots of the asymptotic expansions (15),
(16) and (17), with the coefficients given in tables 1–3. These expansions are seen to ‘stitch’
together very well and give a reasonably good analytic approximation to �(η) in the whole
real line of η. Our figure 1 essentially coincides with figure 10 of [12]. The numerical values
of �(η) at small integer values of η are given in table 4.

The calculations were performed on the 24-processor Linux Cluster System at the ANU
Research School of Physics and Engineering and on the 1928-processor SGI Altix 3700 Bx2

7
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Table 3. Numerical values of the coefficients �n in (17). The second and third columns
contain results from [12], obtained through the TFFSA and the extended dispersion relations
(DR), respectively. The forth column refers to exact results; the numerical value of �1 therein is
taken from equation (21).

CTM (this work) TFFSA [12] Ext. DR [12] From references

�0 −1.197 733 383 797 993(1) −1.197 7331 −1.197 7320 −1.197 733 383 797 993 39 . . . [17]
�1 −0.318 810 124 891(1) −0.318 8103 −0.318 8192 −0.318 810 124 8906 . . . [37]
�2 0.110 886 196 683(2) 0.110 8867 0.110 8915 –
�3 0.016 426 894 65(2) 0.016 4266 0.0164252 –
�4 −2.639 978(1) × 10−4 −2.64 × 10−4 −2.64 × 10−4 –
�5 −5.140 526(1) × 10−4 −5.14 × 10−4 −5.14 × 10−4 –
�6 2.088 65(1) × 10−4 2.07 × 10−4 2.09 × 10−4 –
�7 −4.4819(1) × 10−5 −4.52 × 10−5 −4.48 × 10−5 –
�8 3.16 × 10−7 –
�9 4.31 × 10−6 –
�10 −1.99 × 10−6 –

Table 4. Numerical values of �(η) at small integer values of η. The second, third and fourth
columns contain results [12] from the TFFSA, the high/low-temperature dispersion and the
extended dispersion relations (DR).

�(η) CTM (this work) TFFSA [12] High/Low-T DR [12] Ext. DR [12]

�(−5) −0.109 209 19 −0.109 2101 −0.109 2092 −0.108 8626
�(−4) −0.159 264 38 −0.159 2682 −0.159 2643 −0.158 9421
�(−3) −0.252 989 08 −0.252 9928 −0.252 9887 −0.252 7417
�(−2) −0.441 325 64 −0.441 3450 −0.441 3249 −0.441 2136
�(−1) −0.783 966 50 −0.783 9665 −0.783 9668 −0.783 9576
�(0) −1.197 733 38 −1.197 7330 – −1.197 7320
�(1) −1.389 841 35 −1.389 8410 −1.389 8417 −1.389 8063
�(2) −1.493 056 02 −1.493 0558 −1.493 0566 −1.492 9849
�(3) −1.564 273 20 −1.564 2732 −1.564 2736 −1.564 1727
�(4) −1.618 850 66 −1.618 8506 −1.618 8510 −1.618 7275
�(5) −1.663 248 28 −1.663 2483 −1.663 2485 −1.663 1076

Cluster at the ANU Supercomputer Facility. The level of parallelization varied between 15
and 50 processors. The total amount of CPU time spent for this work was about 9000 h (single
processor equivalent).

To conclude, we have implemented Baxter’s variational corner transfer matrix approach
to obtain the universal scaling function of the square lattice Ising model in a magnetic field,
as shown in figure 1 and table 4. The numerical data are seen to be in remarkable agreement
with the field theory results obtained by Fonseca and Zamolodchikov [12]. We also report a
remarkable agreement (11–14 digits) between our numerical values for G̃1,G2 and G̃2 and
the classic exact results of Barouch, McCoy, Tracy and Wu [4, 14, 15] (see tables 1 and 2),
and a similar agreement between the values �0 and �1 and the exact predictions [17, 37]
of Zamolodchikov’s integrable E8 field theory [8] (see table 3). The high precision of the
numerical results underline the full power and further potential of the variational corner transfer
matrix approach. In this case, the results show beyond any doubt the validity of the connection
between the scaling limit of the Ising model in a magnetic field and the Ising field theory (9).

8
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